
J. AppZ. Maths Mechs, vol. 55, No. 3, pp. 310-315, 1991 0021-8928/91 $15.00+0.00 
Printed in Great Britain 01992 Pergamon Press Ltd 

THE FRONT END OF A GIVEN VOLUME HAVING OPTIMUM PRESSURE DRAG 

IN THE APPROXIMATION OF NEWTON'S LAW OF RESISTANCE* 

A.N. KRAIKO 

The problem of determining the profile of the front end of a 
two-dimensional or axisymmetric body of given volume having minimum 
pressure drag, as predicted by Newton's law of resistance, is 
considered. In this formulation, the solution depends on the magnitude 
of the non-dimensional volume o= OI(Z~Y~+~), where Y=o or 1 in the 
two-dimensional and axisymmetric cases, respectively, Y is the maximum 
admissible radius or half-thickness (if V= 0) of the body, which 
will henceforth be taken as the unit of length, and 61 is the given 

volume (or half of the latter in the case v = 0) of the desired fore- 
body. 

The range of optimum shape calculations that have been based on Newton's law of resistance, 
beginning with Newton's own efforts, is so large (see /l, 2/) that yet another excursion into 
that area in the same approximation might seem unjustified, all the more so, as the case v=l 
has already been treated /3/. However, that attempt was far from successful. Indeed, accord- 
ing to /3/, the solution for the finite o range 

0.149 z 313 1/z/3645 < w < 1/s/5 =0.346 

"if it exists, cannot be determined under the present formulation of the problem". For og 

o < 313J0 / 3645 the optimum front end has a blunt nose; while for l/%<o<c~ it must have 

a cusp /3/. It was mainly the lack of any solution in the intermediate range that prompted 
us to revise the treatment given in /3/. The result of this revision was, first, a solution 

valid for any o<m. Second, we were able not only to show that all the results obtained in 

/3/ were incorrect and to construct optimal front ends for o<m, but also to show that 

for O,<o <13/30~0.433 the optimum shape is essentially new: a cusp projecting from a blunt 

nose. 

1. Consider a two-dimensional or axisymmetric front end af attached at s=o to a 

cylindrical body (Fig.l,a) whose radius or half-thickness, as already mentioned, is taken as 

the unit of length, i.e., Y, = 1. Throughout, 3c, y are Cartesian or cylindrical coordinates, 

according as v=o or Y = 1; the x axis is directed along the velocity vector v, of the 

free stream and either coincides with the axis or lies in the plane of symmetry of the body: 
indices a, . . ..f will be attached to the parameters at the appropriate points of the contour 

af; the index 00 will indicate the free-stream parameters. The pressure Pat the body surface 

is given by Newton's formula: 
p = pm + p,u,2 sin26 (1.1) 

Here p is the density, v = 1 V 1, and 6 is the angle of inclination of the contour with respect 

to the x axis. Formula (1.1) holds for O<@<n/2 or, if Y==Y(s) or x=x(Y) is the 

equation of af, for 

O<y.=dy/dx<ca, O,<x'=dx/dy<oc. (1.2) 

We wish to construct a generator af which, for the given volume o, while satisfying 
(1.2) and the size constraint 

Y<Yt=i (1.3) 

minimizes the pressure drag X. Under these conditions the quantity X itself is determined 
by the distribution of p over af, which is found from y' or x'=l/Y at each point of af, 
using (1.1). 

In this formulation the most general shape of af is a collection of bilateral extremum 
segments on which 0 <y'< 00 or O<s'<co, plus vertical (z'= 0) and horizontal (y= 1 

or ,y'3 0) limiting extremum segments, which appear because of the constraints (1.2) and 

(1.3). This is shown schematically in Fig.l,b; any of the segments drawn in the figure, e.g., 
the "flat nose" (FN) ab, the "inner vertical segment" (IVS) du or the "end cylinder" (EC) hf, 
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may not be present. There may be more than one flat inner face. 
It follows from (1.1) that, apart from a constant term (in x) and constant factors for 

configurations of the type shown in Fig.l,b, which are not essential for the variational 
problem as formulated here, we have 

(I.41 

cl Or a 0 

Fig.1 

0 

Here the sign <indicates the part of the integral along 
cff over segments with r'> 0; the sign L has the same 
meaning for flat sections. 

To obtain the necessary conditions for a minimum of 
x, which determine the optimum generator af, using a con- 
stant Lagrange multiplier ?., one usually constructs an 
auxiliary functional Z = x + ho, whose admissible vari- 
ations 61, with o maintained constant, are identical 
with 6~. Therefore, considering x and o as in (1.4). 
and varying an arbitrary - i.e., not necessarily optimum - 
contour Cff containing the segments shown in Fig.l,b we 
obtain 

(1.5) 

c 2yvy.a (,+r'a)a -hY1+']U+]Axd+ [~'+$]~;Ayd + 
1 -r's 

[Y'7GPj=l.+ AYU + [Y 
y Y"(3 + 0) 

(1 +br'*)* I ,,_AYh- 

-&i&h+ S(h(y'iY-yE) + 

< 
Here Ax and Ay are the increments of the coordinates, in the general case, of thecorner 

points, where segments of different types meet; the subscripts "minus" ("plus") indicate 
values "before", i.e., to the left of ("after", i.e., to the right of) the corners; 6s' is 
the variation-increment of x' for fixed y on flat sections, and 6y and 6~' are the vari- 
ations-increments of y and y' for fixed x on other segments; the term with subscript 
"a" in the coefficient of Ax,, will appear only if there is no FN (otherwise it vanishes 
automatically, since then x~' = 0 but y,' = m), but in that case there are no terms in 
the expression for 6~ with subscript “b”; the subscript “b, u” means that the subscript of 
the appropriate upper point (either b or u) is retained in the integral over the FN or over 
an IVS; if there are several inner flats, the terms with subscript "d" and "u" are summed 
over all of them;finally, the symbol",+" signifies an integral over an end cylinder (if it 
exists). 

Without going into the details of the well-known technique by which formula (1.5) is 
obtained, we will just note two equalities used for that purpose: 

AXbSu=Ax,,d+ {Gx'dy, S6ydx= S(sj,-z)dy'dx (1.6) 
I -I -I 

The integrals in (1.5) and (1.6), as well as in (1.4), are evaluated in the direction of 
increasing x and y. 

2. Analysis of formula (1.5) yields the necessary conditions for x to be a minimum, 
which determine the optimum contour af. We begin with the fact that, since h is chosen at 
will, there must be a "compensating" point k in one of the segments with 0< y’ < 00 at which 
the coefficient of 6y in the last integral vanishes, i.e., we put 
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After this the other variations (6y outside a small neighbourhood of k on the "inclined" 
sections of af, 82' on the FN and IVSs and 6~’ on the EC kf) and increments AS,, AYb, . . 
may be considered to be independent. This independence is achieved by stipulating that when 
any of these quantities are varied simultaneously, Y varies in the neighbourhood of k but in 
such a way that the volume o remains constant. At the same time, however, since Eq.(2.1) 
holds at k, the contribution to 6~ due to the non-zero value of 6Y near k in the last 
integral of (1.5) is a quantity of higher order of smallness. Since the variations 6Y on 
segments with O( y'< CO are arbitrary, it follows that Eq.(2.1) is true 'not only at k but 
on all segments which are bilateral extremum segments (BES). Since Q, is independent of 
z, Eq.(2.1), as we know, is integrable and gives 

m-yy'aQEy~ L hy- 
2y’S 

(l+y’a)* ] = c Gw 

for a suitably determined constant C. 
If the integrand in (1.5) includes quantities of the order of (6~‘)s over BE.%, this 

gives what is known as Legendre's necessary condition for 9 

Y-G<. 

as in (1.4) and arbitrary Q(Y): 
However, this inequality, which makes the coefficient of (6~')' non-negative, is 

too weak; it must be replaced - again for any function Q (Y) - by 

This constraint follows at once from an examination of the coefficients of Ayd or Ay, 
in (1.5), since if it is not true then the insertion of an infinitesimal IVS into a BES, 
such that Ay,< 0 but Ayu>O, will reduce x (see Fig.l,c). 

Now suppose that the optimal generator includes a vertical segment (a flat nose or inner 
vertical segment). Then &b, &d and by, are arbitrary, and therefore 

Y.&'j,'= 1 (2.4) 
i.e., the BES approaches any vertical segment at an angle of 45'. Similarly, as AYh is 
arbitrary, 

Yh_’ = 0 (2.5) 

so that, if the optimum forebody (OF) contains an EC, the BES must approach it smoothly. On 
the EC itself it is permitted that SY'>O. Therefore the optimality condition (non-negativity 
of Sx) would be 

3.60 (2.6) 

On the other hand, if the OB contains a flat nose, it follows from the arbitrariness of 
A%, from the fact that zag= 0 and from (2.4) that 

yb 
q*-ay]b+EY~+-+O (2.7) 

Consequently, in that case b= i/(&b), which is inconsistent with (2.6). Therefore the 
OF cannot have both a FN and an EC. Similarly, assuming the presence of an IVS, noting that 
Axa is arbitrary and using Eq.(2.4), we obtain 

h= 
YuY - YdV 

Z(Y:+ - YP, (24 

It can be shown that the h of (2.7) does not equal the I of (2.81, implying that the 
OF cannot have both a FN and IVSs. 

We will now show that the OF for a given volume does not contain a FN. To that end, 
isolating y" from (2.1) and using (2.4) and (2.7), we find that h+"= iiyb>O. Thus Y' must 
increase as one moves right from the point b,. Since I/'= 1, this violates condition (2.3). 
Consequently, the desired generator does not contain a FN. For a cusped OF, we equate the 
coefficient of A& in (1.5) to zero, getting 

y,’ = 0 (2.9) 
Hence it follows that the constant I? in (2.2) must vanish for at least the "first" BES 

ad (there is now no point b:), so its Eq.f2.2) becomes 

2y.3 
hy-gqTJi =o (2.10) 
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Now suppose that the OF includes an IVS. Then it follows from Eq.(2.10), which is valid 
at d_, and from the condition obtained by equating the coefficient of Azd in (1.5) to zero 
(see above, the derivation of (2.811, that (2.10) remains valid to the right of the IVS, 
thus also at the point a+. By (2.4), however, this gives different values of the constant 

& so we have proved that there cannot be IVSs. Finally, it follows from (2.10) and (2.5) 
that the OF cannot contain an EC. 

According to the above analysis, therefore, the desired OF containsneither FN, IVSs nor 
EC, and if it has a cusped BES the latter must satisfy condition (2.3): Y'G 1, which is 
more restrictive than Legendre's condition Y'G1/$ used in /3/. Consequently, the flat- 
nosed front ends and sharp-nosed contours, with Y' > 1 at the ends, constructed in 131, 
are not optimal. This would seem to make the problem even more acute, since now we lack an 
OF over an even larger range of o values than indicated in f3/. 

In actual fact, however, our analysis has overlooked one more possibility for the position 
of a vertical section: at t = 0, i.e., an OF consisting of an "end vertical section" (EVS) 
with a cusp projecting from it (Fig.l,d). A formula for 6~ in this case is obtained by 
omitting the terms in (1.5) subscripted b and h, as well as the integral 
over the horizontal segment, and setting Y,' = 0, Y,,, = Yf = 1. Then, using the arbitrariness 
of the variations 6y over ad and of AYd, we again obtain Eq.(2.10), which determines the 
shape of the optimum cusp ad, and condition (2.4): yd-’ = 1 at its end point. The remaining 
terms in (1.5) involving Axd and 6~' over df, may be rewritten in a more convenient form 
after integrating the integral over the EVS by parts: 

Since by (2.10) h>O, this implies that under any admissible variation of the EVS, 
when AZ,,<0 and SZ<O on df, we have 6x.20 and therefore this configuration is indeed 
optimal. 

3. The solution of Eq.12.10) can be developed in parametric form. To that end, taking 
p sa y' as parameter and remembering that by (2.4) and (2.10) h = f / @Yd), we can rewrite 
(2.10) in the form 

Hence, putting zO=z/Yd, we have 

ds” ~3.9 dye 4 d w 
dp =dyO dp = y- dg F-1 (l$.q")P 

Integrating from d, where p-1 and x0=0, to an 
obtain 

Eqs.(3.11 and (3.21, in which 06461 (see (2.4) 
ametric representation of the optimum cusp. By (3.2), 
the peak is 2Yd. Eqs.(3.1) and (3.2) involve neither Y 

and (2.911, are the required par- 
I,~=z~(O)= -2, i.e., the length of 
nor 'Pd. Consequently, the shape of 
axisymmetric cases and, in addition, the optimum.cusp is the same in the two-dimensional and 

it is universal in the variables I" and y" (independent of the value of yd<\i). The func- 
tion II' = Y" (2") as constructed by formulae (3.11 and (3.2) is shown in Fig.2. 

By (1.41, (3.11 and (3.21, the expressions for w and x for the OF consisting of a 
vertical section and a cusp projecting from it are as follows: 

arbitrary non-negative q<*, we 

(3.2) 

,=(+++- y&*if~=O 

i ) (13/3OlYdd; if v=l 

X= 

1 

il-($3++)Yd=i-_lii(+++)~ if v-0 

7--- 4. *d*=+-$-(+$oy ifv=i 

(3.3f 

The second equalities for x are obtained by replacing Yd by o according to the formulae 
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for 0. 
Formulae 

provided that 
(3.3) hold as long as ud does not reach its "limiting" value ~d=1, i.e., 

O<o<i/3$x/8r0.726 if v=O (3.4) 

0 < 0 < 13/30~0.433 if v = i 

Incidentally, it should be mentioned that for front ends with straight-line generators 
(wedges or cones) and half-angle a= 45" at the cusp, o= l/12(1 +v)], i.e., o= 0.5 or 0.25, 
according as v= o or v= 1. For arbitrary OL 

1 a 1 
@= (2fv)tga ’ x= (i+v;;&g%) =(l+v)[1+(2+v)*w*] 

(3.5) 

where lea may take values in the range Ogtgagm. The limiting cases are a = n/2, tga=oo, 
o=o and x = l/(1 fv), corresponding to a flat nose, and a=tga=X=O and o=~, 
corresponding to an infinitely long cusp with straight-line generator. 

I m 
-2 -I 0s 

Fig.2 

Fig. 

fl.5 
x 

a, 2.5 

.3 0 

For o greater than the limiting values of (3.4), the optimum case is that of cusped 
bodies whose contours, beginning on the x axis, where qa-&=O, reach the point f with 
z,= 0, yf= I and qf<<. A parametric representation of these bodies is obtained along the 
same lines as (3.1) and (3.2): 

W 1 
[ 

qa - 1 

y=h(i-t 

qts - 1 

* = - (1 - (1 + ,fP)’ h. I 
(3.0) 

h = 2Sf3 / (i + $)", 0 d 4 < nf < 1 

Naturally, if qf= 1 and Yd= 1 these formulae are identical with (3.1) arid (3.2). 
Moreover, it can be shown that the OFs (3.6) are "scaled" terminal parts of the cusp illustrated 
in Fig.2. Allowing for the differences in the choice of variables, formulae (3.6) are 
equivalent to those obtained for cusped front ends in /3/. The essential difference, however, 
is that in /3/ it was claimed that such front ends are optimal in the larger range W<V-x 
The integral characteristics w and x of these bodies are given by 

45 + %,*+ a; 15 -q; 
o== 

12oqf ’ x= 40(1+9;) f qa. O<qt<l (3.7) 

- these formulae are identical with those derived in /3/ (except for the notation and the 
limiting value of qff). 

The curves x = x(o) and x= x(0-l) of the axisymmetric OFs constructed above, of the 
allegedly "optimum" front ends with V= 1 in /3/ and of the cones given by (3.3), (3.5) 
and (3.6), are shown in Fig.3. In order to cover the entire range of 0, values, two curves 
have been drawn for each case: the upper curves x=x(o) for 0<0<13/30 and the lower 
curves through the origin, x = 7. (o-1) for 13/30\i~<=~. The solid curves represent the OFS 
worked out in the present paper, the dashed curves those of /3/ (broken off in the range of 
0 values for which no solution was obtained in /3/) and, finally, the dash-dot curves 
represent cones. The horizontal axis represents both on= ol(13l30) and (GP-1. At oO> 1, 
i.e., (0~)-1<1, the lower solid and dashed curves coincide. 

It should be stressed that our solutions have been constructed in the approximation of 
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Newton's law of resistance which, as is well-known /4/, works much better for convex bodies 
than for concave ones. One can expect particularly large deviations from this theory in 
bodies with "inner positive" corners, such as the corner at the point d in configurations 
with rear vertical segments. The first way to guarantee a better approximation to reality 
is to introduce an additional restriction on the radius of curvature of the admissible con- 
tours: R>r, where r>O is some given constant. When that is done the corner at d 

is rounded off to radius r. Another method would be to introduce point forces at "positive" 
corners. The question of modifying 
additional anaysis. 

the solution in the context of this approach requires 

The author is indebted to O.A. Gil'man, who drew attention to the problem, and to 
N.I. Tillyayeva and V.A. Vostretsov for their assistance. 
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SELFSIMILAR SOLUTIONS DESCRIBING THERMAL CAPILLARY FLOWS IN VISCOUS LAYERS* 

V.A. BATYSHCHEV 

Thermal capillary flows in thin layers, brought about by non-uniform 
heating of the free boundary, are investigated at high Marangoni 
numbers. Selfsimilar solutions of the non-linear boundary-layer 
equations are constructed under conditions of axial symmetry, and 
asymptotic formulae for the solutions are found for small and large 
values of the thickness of the layer. It is shown that the selfsimilar 
solutions may not be unique when the parameters of the problem have 
certain values. The buoyancy forces in an inhomogeneous fluid lead to 
the reinforcement or suppression of the flows or to the formation of 
reverse flows close to the free boundary. Selfsimilar solutions when 
there are thermal capillary effects present have been studied in /l-5/. 

1. The non-linear axially-symmetric problem of the stationary thermal capillary motion 
of an incompressible fluid in a thin layer, bounded by a free surface p and a solid wall S 
is considered at low coefficients of viscosity v--to and thermal diffusivity X+-O when 
there is a zero temperature gradient on the free boundary: 

(v, V)v = --p-'Vp + YAV + g 

vVT = xAT, divv = 0 

(1.1) 

P = 2vnnn + u (k, + h) + P*, (x7 Y, 4 E r 

2vp mn - (nrIn)l = v,o, vn = 0, (z, y, 2) E r 

T = Tr, (5, y, z) E r; v = T - Ts = 0, (2, y, z) E S 

(1.2) 


